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A time-reversal-invariant �TRI� topological superconductor has a full pairing gap in the bulk and topologi-
cally protected gapless states on the surface or at the edge. In this paper, we show that in the weak pairing limit,
the topological quantum number of a TRI superconductor can be completely determined by the Fermi-surface
properties and is independent of the electronic structure away from the Fermi surface. In three dimensions, the
integer topological quantum number in a TRI superconductor is determined by the sign of the pairing order
parameter and the first Chern number of the Berry phase gauge field on the Fermi surfaces. In two dimensions
and one dimension, the Z2 topological quantum number of a TRI superconductor is determined simply by the
sign of the pairing order parameter on the Fermi surfaces. Our results could directly aid the search for
topological superconductors in real materials.
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I. INTRODUCTION

Since the discovery of quantum spin Hall effect,1–4 topo-
logical insulators in both two dimensions �2D� and three di-
mensions �3D� have generated great interest both theoreti-
cally and experimentally.5–9 Following this development,
recent attention has focused on time-reversal-invariant �TRI�
topological superconductors and superfluids.10–13 There is a
direct analogy between superconductors and insulators be-
cause the Bogoliubov-de Gennes �BdG� Hamiltonian for the
quasiparticles of a superconductor is analogous to the Hamil-
tonian of a band insulator, with the superconducting gap cor-
responding to the band gap of the insulator. 3He-B is an
example of such a topological superfluid state. This TRI state
has a full pairing gap in the bulk and gapless surface states
consisting of a single Majorana cone.10–12,14 In fact, the BdG
Hamiltonian for 3He-B is identical to the model Hamiltonian
of a 3D topological insulator proposed by Zhang et al.7 In
2D, the classification of topological superconductors is very
similar to that of topological insulators. Time-reversal break-
ing superconductors are classified by an integer,15,16 similar
to quantum Hall insulators17 while TRI superconductors are
classified10–13 by a Z2 invariant in 1D and 2D but by an
integer �Z� class in 3D. The integer-valued topological in-
variant in 3D can be written as a winding number over the
entire momentum space.12 Simplified criteria for inversion
symmetric superconductors has been proposed in the
literature.18 An explicit expression of the Z2 topological in-
variants in 1D and 2D has not been obtained in the literature.

Despite the similarity of topological insulators and topo-
logical superconductors, there is a key physical difference
between them. Starting from a Fermi-liquid “normal state”
with some attractive interaction, superconductivity is in-
duced at low enough temperatures due to the Cooper insta-
bility of the Fermi surface. At least right below the transition
temperature, Cooper pairing is only important around the
Fermi surface, so the topological properties of such a super-
conductor are determined completely by the properties in the
neighborhood of the Fermi surface, rather than that of the
full Brillouin zone, as in the case of a topological insulator.

Motivated by such an observation, in this paper we obtain
simple and explicit physical criteria for TRI topological su-
perconductivity in one, two, and three dimensions in the
weak pairing limit, where the pairing is only important in a
small neighborhood of the Fermi surface. In 3D, the Fermi-
surface topological invariant �FSTI� of a TRI superconductor
is determined by the sign of the pairing order parameter and
the first Chern number of each Fermi surface. Here the first
Chern number of a Fermi surface is defined by the net flux of
the Berry phase gauge field penetrating the Fermi surface.
This is quantized as long as the Fermi surface is a smooth
two-dimensional manifold. Based on this Fermi-surface cri-
terion for the 3D topological superconductor, the Z2 FSTI’s
in 1D and 2D can be obtained by dimensional reduction.19

The criteria for a Z2 nontrivial superconductor in the weak
pairing limit is simple: a TRI superconductor is nontrivial
�trivial� if there are an odd �even� number of Fermi surfaces
with a negative pairing order parameter. For example, the
superconductivity in a 2D Rashba system is nontrivial if the
pairing on the two Fermi surfaces has opposite sign. Inspired
by such Fermi-surface formulas, we also obtain an explicit
expression of the Z2 FSTI in 1D and 2D which applies to
generic superconductors beyond the weak pairing limit. Our
criteria is simple to compute and applies to generic TRI su-
perconductors so that we expect it to be helpful in the search
for topological superconductors.

II. TOPOLOGICAL INVARIANT IN 3D TRI
SUPERCONDUCTORS

We start from a generic mean-field Hamiltonian of a 3D
TRI superconductor, which can be written in momentum
space as

H = �
k
��k

†hk�k +
1

2
��k

†�k�−k
†T + H.c.�� � �

k
�k

†Hk�k,

with
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�k =
1
�2
��k − iT�−k

†

�k + iT�−k
† 	, Hk =

1

2
� hk + iT�k

†

hk − iT�k
† 	 .

�1�

In general, �k is a vector with N components and hk and �k
are N�N matrices. The matrix T is the time-reversal matrix
satisfying T†hkT=h−k

T , T2=−I, and T†T= I. For further back-
ground and derivation see Appendix A. We have chosen a
special basis in which the BdG Hamiltonian Hk has a special
off-diagonal form. It should be noted that such a choice is
only possible when the Hamiltonian has both time-reversal
symmetry and particle-hole symmetry. These two symme-
tries also require T�k

† to be Hermitian, which makes the ma-
trix hk+ iT�k

† generically non-Hermitian. The matrix hk
+ iT�k

† can be decomposed by singular value decomposition
�SVD� as hk+ iT�k

† =Uk
†DkVk with Uk , Vk unitary matrices

and Dk a diagonal matrix with non-negative elements. One
can see straightforwardly that the diagonal elements of Dk
are actually the positive eigenvalues of Hk. For a fully
gapped superconductor, Dk is positive definite and we can
adiabatically deform it to the identity matrix I without clos-
ing the superconducting gap. During this deformation the
matrix hk+ iT�k

† is deformed to a unitary matrix Qk=Uk
†Vk

�U�N�. As shown in Ref. 12, the integer-valued topological
invariant characterizing topological superconductors is de-
fined as the winding number of Qk,

NW =
1

24�2
 d3k�ijk Tr�Qk
†�iQkQk

†� jQkQk
†�kQk� . �2�

Now we study Qk in the weak pairing limit. For simplicity,
in the following, we will assume the Fermi surfaces are all
nondegenerate and there are no lower dimensional zero-
energy defects such as point or line nodes. All our conclu-
sions can be easily generalized to more generic cases. When
the Fermi surfaces are nondegenerate and the weak pairing
term �k is only turned on around the Fermi surfaces, the
matrix elements of T�k

† between different bands are negli-
gible. Thus, to leading order we have

hk + iT�k
† 
 �

n

��nk + i	nk��n,k��n,k�

with

	nk � �n,k�T�k
†�n,k� � R , �3�

where �n ,k� are the eigenvectors of hk. Physically, 	nk is the
matrix element of �k

† between �n ,k� and its time-reversed
partner �n̄ ,−k�=T†�n ,k�. In this approximation, the matrix
Qk is given by

Qk = �
n

ei
nk�n,k��n,k� �4�

with ei
nk = ��nk+ i	nk� / ��nk+ i	nk�. In the weak pairing limit,
we take 	nk to be nonzero only in a small neighborhood −�
�E�� of the Fermi level. As shown in Fig. 1, the phase 
nk
changes from 0 to �� across the Fermi level, with the sign
determined by the sign of 	nk. In the limit �→0, such a
domain-wall configuration of 
nk can be expressed by the
formula

�
nk = − �vnk sgn�	nk�	��nk� �5�

in which vnk=�k�nk is the Fermi velocity. It should be noted
that for a gapped superconductor 	nk remains nonzero for all
k on the Fermi surfaces, so the sign of 	nk is fixed on each
Fermi surface.

Once the behavior of 
nk in the Brillouin zone is simpli-
fied to Eq. �5� in the weak pairing limit, the winding number
�Eq. �2�� can be simplified to the following simple FSTI:

NW =
1

2�
s

sgn�	s�C1s, �6�

where s is summed over all disconnected Fermi surfaces and
sgn�	s� denotes the sign of 	nk on the sth Fermi surface. C1s
is the first Chern number of the sth Fermi surface �denoted
by FSs�,

C1s =
1

2�



FSs

d
ij��iasj�k� − � jasi�k�� �7�

with asi=−i�sk�� /�ki�sk� the adiabatic connection defined
for the band �sk� which crosses the Fermi surface and d
ij

the surface element two forms of the Fermi surface. More
details of the derivation of Eq. �6� are included in Appendix
B.

As an example, consider a two-band Hamiltonian hk
=k2 /2m−�+�k ·�. For ��0, the system has two Fermi
surfaces which are concentric spheres around k=0. �The
two-band model should be regularized on the lattice but the
lattice regularization is unimportant as long as no other
Fermi surfaces are introduced.� Denoting the electron states
at the inner �outer� Fermi surface by �k ,+�−��, we have
� ·k�k ,��= � �k��k ,��. It is easy to check that the two
Fermi surfaces carry opposite Chern number C�= �1. Thus,
according to Eq. �6�, we can obtain a topological supercon-
ductor if the two Fermi surfaces have opposite signs of pair-
ing. The time-reversal matrix is T= i�y in this system. If we
have �k= i�0�y, then iT�k

† =�0I which has the same sign on
the two Fermi surfaces and leads to NW=0. On the other
hand, if we have �k= i�0�y� ·k, then iT�k

† =�0� ·k has op-
posite sign on the two Fermi surfaces so that NW=1 if �0
�0. If we take the limit �→0, we obtain a topological su-
perconductor with quadratic kinetic-energy term and pairing
�k= i�0�y� ·k, which is exactly the BdG Hamiltonian of the
3He-B phase. This example also illustrates how the FSTI
�Eq. �6�� can be generalized to systems with degeneracies on

δnk

εnk

εnk

k

θnk
π

− π

0

(a) (b)

FIG. 1. �Color online� �a� The path of �nk+ i	nk in the complex
plane for positive �red dashed� and negative �blue� 	nk around the
Fermi surface. �b� 
nk and �nk vs momentum k. The change in 
nk
across kF is −� �+�� when 	nk is positive �negative�, as shown by
the red dashed �blue� curve.
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the Fermi surface: one can always add a small perturbation
proportional to T�k

† to the Hamiltonian to lift the degeneracy
while preserving the topological properties of the supercon-
ductor.

III. DIMENSIONAL REDUCTION TO 2D

The FSTI can be generalized to lower dimensions, i.e., 2D
and 1D. The TRI topological superconductors in 2D and 1D
are related to the one in 3D by dimensional reduction, similar
to the procedure carried out in the context of TRI topological
insulators in Ref. 19.

Due to the same symmetry reason as the 3D case, the
BdG Hamiltonian Hk of a 2D TRI superconductor can also
be written in the form of Eq. �1� so that one can also define
a matrix Qk�U�N� for the 2D case. Since �2�U�N��=0, we
can always find a smooth deformation Qk,
 , 
� �0,��
which interpolates between Qk and the identity I,

Qk,
 = � I , 
 = 0

Qk, 
 = � .
� �8�

It should be noted that Qk satisfies T†QkT=Q−k
T due to time-

reversal symmetry. Thus, if we define Qk,−
=T†Q−k,

T T for


� �0,��, we obtain Qk,
 for 
� �−� ,�� which is continu-
ous and periodic in 
→
+2�. Considering 
 as a momen-
tum in an additional dimension, Qk,
 describes a 3D TRI
superconductor, which is characterized by the winding num-
ber �Eq. �2��. If there are two different interpolations Qk,

and Qk,
� which both interpolate between Qk and I, it can be
shown that time-reversal symmetry requires their winding
numbers to be different by an even number: NW�Q�
−NW�Q��=0 mod 2. Thus the parity �−1�NW�Q� is independent
of the choice of interpolation path and is a Z2 topological
invariant uniquely determined by Qk.

Now we study the expression of such a Z2 invariant in the
weak pairing limit. In this limit, the interpolation of Qk to
Qk,
 is equivalent to interpolating the 1D Fermi circles of the
2D normal-state Hamiltonian hk to Fermi surfaces in a 3D
Brillouin zone parameterized by �kx ,ky ,
�. We can simply
extrapolate the pairing on the Fermi circles to the Fermi sur-
faces, as illustrated in Fig. 2. If the Fermi surfaces remain
nondegenerate during the interpolation, we obtain the Z2

FSTI as the parity of the winding number given by Eq. �6�,

N2D = �− 1�NW = �− 1�1/2�ssgn�	s�C1s = �
s

�i sgn�	s��C1s.

Such a formula can be further simplified by noticing the
following two properties of the Chern number C1s carried by
the Fermi surfaces: �i� the Chern number of each Fermi sur-
face satisfies �−1�C1s = �−1�ms, where ms is the number of TRI
points enclosed by the sth Fermi surface. �ii� The net Chern
number of all Fermi surfaces vanishes, �sC1s=0. We leave a
more detailed demonstration of these two conclusions to Ap-
pendix C and only sketch the physical reasons for them here.
The conclusion �i� comes from the fact that a Fermi surface
which only encloses one TRI point, such as Fermi surface 1
in Fig. 2, always encloses a singularity at the TRI point due
to Kramers’ degeneracy. One can prove that the Chern num-
ber is always odd by making use of time-reversal symmetry.
The Fermi surfaces enclosing multiple TRI points can be
adiabatically deformed into several Fermi surfaces, each en-
closing a single TRI point. The conclusion �ii� is a conse-
quence of the Nielsen-Ninomiya theorem20 which states that
the total chirality of a 3D lattice system must be zero.

Using these properties of C1s, we finally obtain the fol-
lowing expression for the Z2 FSTI which is independent of
the interpolation to 3D:

N2D = �
s

�sgn�	s��ms. �9�

The criterion shown in Eq. �9� is quite simple: a 2D TRI
superconductor is nontrivial �trivial� if there are an odd
�even� number of Fermi surfaces each of which encloses one
TRI point in the Brillouin zone and has negative pairing.

IV. DIMENSIONAL REDUCTION TO 1D AND GENERIC
EXPRESSION OF Z2 INVARIANT

Following the same logic, the dimensional reduction can
be carried out again to obtain the Z2 FSTI in 1D. This results
in an identical formula to Eq. �9�. Since in 1D each Fermi
“surface” �which consists of two points at kF and −kF� al-
ways encloses one TRI invariant point, the FSTI is simply

N1D = �
s

�sgn�	s�� , �10�

where s is summed over all the Fermi points between 0 and
�. In other words, a 1D TRI superconductor is nontrivial
�trivial� if there are an odd number of Fermi points between
0 and � with negative pairing. Two examples with trivial and
nontrivial pairing are shown in Fig. 3.

Interestingly, from Fig. 3 we can get an alternative under-
standing of the 1D topological superconductor, which can
apply to a generic 1D TRI superconductor beyond the weak
pairing limit. As discussed earlier in Fig. 1, the sign of the
pairing 	s determines the winding of the phase 
nk across the
Fermi point. On the other hand, we have shown that time-
reversal symmetry requires T†QkT=Q−k

T , from which we can
find that 
nk=
n̄−k if �n ,k� and �n̄ ,−k� label a Kramers’ pair.
Thus, along the path from k=0 to k=�, the change in 
nk

θ

0

π

kx

ky

1 2 3

3

dimens ional
reduction

FIG. 2. �Color online� Dimensional reduction from a 3D TRI
superconductor to a 2D TRI superconductor. The 2D TRI supercon-
ductor corresponds to the 
=� section of a 3D superconductor. The
Fermi surfaces with blue �red dashed� color are those with positive
�negative� pairing amplitude 	s.
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and 
n̄k must be the same modulo 2�: �0
�dk��k
nk−�k
n̄k�

=2�n , n�Z. In the examples shown in Fig. 3 we have n
=1 for the nontrivial pairing and n=0 for the trivial pairing.
Such a parity difference of the winding number of 
nk turns
out to be generic and can be captured by the following Z2
FSTI:

N1D =
Pf�T†Qk=��
Pf�T†Qk=0�

exp�−
1

2



0

�

dk Tr�Qk
†�kQk�	 , �11�

where we have used T†QkT=Q−k
T ⇒T†Qk=−�T†Q−k�T so that

T†Qk is antisymmetric for k=0, � and the Pfaffian is well
defined. It is straightforward to show that N1D= �1 is a Z2
quantity and also a topological invariant. More details on the
properties of the Z2 FSTI �Eq. �11�� and its relation to the
FSTI �Eq. �10�� are given in Appendix D. Equation �11� is
the topological superconductor analog of Kane and Mele’s Z2
invariant in quantum spin Hall insulators.21 Following the
same approach as Refs. 22 and 23, one can obtain three Z2
invariants in 2D, one of which is the “strong topological
invariant” N2D=N1D�ky =0�N1D�ky =��, with N1D�ky =0����
the 1D topological invariant defined for the ky =0��� system,
respectively. This topological invariant is robust to disorder
and is equivalent to the one described by Eq. �9�.

V. SUMMARY AND MORE DISCUSSION

In summary, we have presented the criteria for TRI topo-
logical superconductivity in the physical dimensions one,
two, and three. When the Fermi surfaces are nondegenerate,
the criteria are very simple. In three dimensions, the winding
number is an integer which is determined by the sign of
pairing order parameter and the Chern number of the Fermi
surfaces. In one and two dimensions, a pairing around the
Fermi surface is nontrivial if there are an odd number of
Fermi surfaces with a negative pairing order parameter. We
also obtained an explicit formula for the Z2 invariants appli-
cable to generic 1D and 2D TRI superconductors. Our results
provide simple and physical criteria that can be used in the
search for topological superconductors. Our FSTI’s suggest
to search for topological superconductors in the nonconven-
tional superconductors with strong inversion symmetry
breaking and strong correlation. The strong inversion sym-

metry breaking is necessary to generate spin-split Fermi sur-
faces and strong electron-electron Coulomb interactions pre-
fer the pairing to have a nonuniform sign in the Brillouin
zone.24
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APPENDIX A: BACKGROUND AND DERIVATION OF
THE BdG HAMILTONIAN

We first list some basic properties of time-reversal-
invariant superconductors in generic dimensions and then go
on to derive the form of Eq. �1� from the main text. Consider
a general TRI superconductor with the Hamiltonian

H = �
k
��k

†hk�k +
1

2
��k

†�k�−k
†T + H.c.��

� �
k

��k
†,�−k

T �H�k�� �k

�−k
†T 	 �A1�

with

H�k� = � h�k� ��k�
�†�k� − hT�− k�

	 . �A2�

The normal-state Hamiltonian h�k� is time-reversal invariant,
which means there is a matrix T satisfying

T−1�kT = T†�−k, T†hkT = h−k
T , T = − TT, T†T = I .

�A3�

From the transformation property of �k we can obtain

T−1�k
†T = �−k

† T �A4�

so that

T−1� �k

�−k
†T 	T � �T†

TT	� �k

�−k
†T 	 = �T†

− T 	� �k

�−k
†T 	

�A5�

and the time-reversal symmetry of the Hamiltonian requires

T†H�k�T = H�− k�T

with

T = �T
− T†	 . �A6�

On the other hand, the following identity:

� �k

�−k
†T 	†

= � I

I
	��−k

�k
†T 	 �A7�

requires the particle-hole symmetry of the BdG Hamiltonian,

0

E

π
k

0

E

π
k

N1d=-1 N1d=1

FIG. 3. �Color online� Simple examples of �a� nontrivial and �b�
trivial pairing in a 1D system. The red �open� and blue �closed� dots
are Fermi points with negative and positive pairing, respectively.
The phase 
=
nk is taken to be the same at k=0 for the two bands.
At k=�, 
 of the two bands are differ by �a� 2� for nontrivial
pairing and �b� by 0 for trivial pairing.
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C†H�k�C = − H�− k�T

with

C = � I

I
	 . �A8�

The two symmetries �Eqs. �A6� and �A8�� require the pairing
matrix ��k� to satisfy

��k� = − �T�− k�, �T�†�k��† = T�†�k� . �A9�

If we define

� = iTC† = � iT
− iT† 	 , �A10�

then we have

�†H�k�� = CT†H�k�TC† = CH�− k�TC† = − H�k� .

�A11�

The “chirality operator” � can be diagonalized by

� = V†�I

− I
	V

with

V =
1
�2
�I − I

I I
	�I

− iT 	 . �A12�

To derive Eq. �1� from the main text we transform the basis
to the eigenbasis of � to get the Hamiltonian form

H̃�k� = VH�k�V† = � hk + iT�k
†

hk − iT�k
† 	 . �A13�

As is mentioned in main text, the matrix Ak=hk+ iT�k
† can

be decomposed by SVD

Ak � hk + iT�k
† = Uk

†DkVk �A14�

in which Dk is a diagonal matrix with nonnegative real di-
agonal components and Uk and Vk are unitary. The Hamil-

tonian H̃�k� can be diagonalized as

H̃�k� = � Uk
†DkVk

Vk
†DkUk

	
=�Uk

†

Vk
† 	� Dk

Dk
	�Uk

Vk
	

=
1
�2
� Uk Uk

− Vk
† Vk

† 	�Dk

− Dk
	 1

�2
�Uk

† − Vk

Uk
† Vk

	 . �A15�

Thus we see that the eigenvalues of the Hamiltonian are
given by the eigenvalues of Dk and −Dk. For a gapped
Hamiltonian, all the eigenvalues of Dk are positive so that we
can adiabatically deform Dk to I, which deforms the Hamil-
tonian to the form

H̃�k� 
 � Qk

Qk
† 	, Qk � Uk

†Vk � U�N� . �A16�

It can be seen from the derivation above that Qk is uniquely
determined by the BdG Hamiltonian Hk, up to a
k-independent U�N��U�N� rotation

Qk → gQkh, g,h � U�N� . �A17�

All physical information carried by Qk, such as the topologi-
cal invariants, is insensitive to this global U�N��U�N� ro-
tation.

APPENDIX B: DETAILED DERIVATION OF THE 3D
FERMI-SURFACE FORMULA

In this section we will show the detailed calculation of the
3D Fermi-surface formula. Beginning with the generic form
of the winding number in 3D we will show how to derive Eq.
�6� from the main text. The general formula for the integer-
valued topological number is

NW =
1

24�2
 d3k�ijk Tr�Qk
†�iQkQk

†� jQkQk
†�kQk� . �B1�

First of all, if �k=0 for some region of k, the winding num-
ber density vanishes in that region. To see that, notice that for
�k=0, Qk is an adiabatic deformation of Ak=hk so that Qk is
Hermitian and Qk

2 =Qk
†Qk= I. Consequently the winding

number density is given by

�W =
1

24�2�ijk Tr�Qk�iQkQk� jQkQk�kQk� . �B2�

By making use of �i�Qk
2�=Qk�iQk+�iQkQk=0, i.e.,

�Qk ,�iQk�=0, one can prove that �W=0. This confirms our
statement that in the weak pairing limit, when only the pair-
ing around Fermi surfaces is considered, the topological in-
variant NW is completely determined by the physics in the
neighborhood of the Fermi surfaces.

As discussed in Eq. �4� of the main text, in the weak
pairing limit Qk can be written as

Qk = �
n

ei
nk�n,k��n,k� �B3�

with ei
nk = ��nk+ i	nk� / ��nk+ i	nk� and 	nk= �n ,k�T�k
†�n ,k�.

To the leading order, near the Fermi surface we have

ei
nk 

vF�k� − kF� + i	nkF

�vF
2�k − kF�2 + 	nkF

2
. �B4�

In the limit 	nkF
→0, we have

lim
	nkF

→0

nk → � sgn�	nkF

���kF − k�� �B5�

with ��x� the step function satisfying ��x�=1, x�0 and
��x�=0, x�0. Thus we obtain

�k�

nk = − � sgn�	nk�	�k� − kF� . �B6�

In the vector form, this equation can be written as Eq. �5� of
the main text,
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�
nk = − �vnk sgn�	nk�	��nk� . �B7�

Now we simplify the winding number formula by using Eq.
�B3�. After some algebra we obtain

NW =
i

2�2
 d3k�
n,s

�ijk��i
n�aj
ns sin


ns

2 	�ak
sn sin


sn

2 	
−

2i

3 �
p
�ai

pn sin

pn

2 	�aj
ns sin


ns

2 	�ak
sp sin


sp

2 	� ,

�B8�

where 
ns=
n−
s and ai
ns=−i�n ,k��i�s ,k� is the non-Abelian

adiabatic connection. When we restrict the pairing to an en-
ergy shell −���nk�� and take the �→0 limit, the only
nonvanishing term is the one with �i
n which has a 	 func-
tion on the Fermi surface. This leads to

NW = −
i

2�2

FS

d2k�

kF−�/vF

kF+�/vF

dk��
n,s

��
n sin2

�

ns

2
�a1

nsa2
sn − a2

nsa1
sn�

=−
i

2�2

FS

d2k��
n,s
�
 d
� sin2
n − 
s

2
��a1

nsa2
sn − a2

nsa1
sn�

=−
i

2�2

FS

d2k��
n,s
�
n − sin�
n − 
s�

2
�


n
−


n
+

�a1
nsa2

sn − a2
nsa1

sn� ,

�B9�

where 
n
� are the values of 
n right outside and inside the

Fermi surface, respectively. When there is only one band that
crosses the Fermi surface, 
n

+=
n
− for all other bands. Label-

ing the single band crossing the Fermi surface with n=0, we
have

NW = −
i

2�2

FS

d2k��
s�0
�
0 − sin�
0 − 
s�

2
�


0
−


0
+

�a1
0sa2

s0 − a2
0sa1

s0� .

�B10�

Since 
0
� and 
s all have the values 0 or �, the second term

sin�
0−
s� vanishes, and we have

NW = −
i

4�2

FS

d2k��
s�0

�
0�a1
0sa2

s0 − a2
0sa1

s0�

=
1

4�
�
FS

sgn�	sk�

FS

d2k���1a2
00 − �2a1

00�

=
1

2�
s

sgn�	s�C1s. �B11�

It should be noted that �i� the superconducting gap on the
Fermi surface is given by �	nk� so that sgn�	nk� is the same
for all the k on the same Fermi surface, otherwise the super-
conducting gap would vanish for some k. �ii� The Chern
number of the sth Fermi surface C1s is defined with the nor-

mal vector along the direction of vF, which is opposite for an
electron pocket and a hole pocket.

APPENDIX C: PROOF OF CHERN-NUMBER PROPERTIES
USED IN THE DIMENSIONAL REDUCTION TO 2D

In the main text, we have used the following two proper-
ties of the Fermi-surface Chern number to obtain the 2d Z2
formula: �1� the Chern number of each Fermi surface satis-
fies �−1�C1s = �−1�ms, where ms is the number of TRI points
enclosed by the sth Fermi surface. �2� The net Chern number
of all Fermi surfaces vanishes, �sC1s=0. In this section, we
will prove both properties.

1. Proof of property 1

We first study a simple Fermi surface enclosing one TRI
point, e.g., the � point, as shown in Fig. 4�a�. Denote the
states at the Fermi level as �s ,k�. The Berry phase gauge
potential is defined by ai

ss=−i�s ,k��i�s ,k�. In the following,
we will denote ai=ai

ss for simplicity. The time-reversal in-
variance of the normal-state Hamiltonian hk requires the
time-reversed state T��s ,k�� to also be on the Fermi surface.
When the bands are nondegenerate on the Fermi surface, in
general, we have

T��s,k�� = ei�k�s,− k� �C1�

⇒ai�− k� = − i�s,− k�
�

��− ki�
�s,− k�

= iT��s,k��ei�k�i�e−i�kT��s,k���

= �i�k + i��s,k��i��s,k����

= �i�k + ai�k� . �C2�

Thus the gauge curvature is

0

π

kx

ky

L1 L2

kz
FS +

FS -

0

π

kx

ky

kz
FS +

FS -

A B L1 L2 B 1
A1

B 2A2

(a) (b)

FIG. 4. �Color online� �a� Schematic picture of a Fermi surface
enclosing one TRI point �0,0,0�. The Fermi surface is separated to
two parts FS+ and FS− by kz=0 plane. The interface between the
two parts is further split into curves L1 �red dashed curve� and L2

�blue curve� which are time-reversal partners of each other. The
interface of L1 and L2 are given by points A and B. �b� Schematic
picture of a Fermi surface enclosing two TRI points �0,0,0� and
�0,0 ,��. Similar to �a�, the Fermi surface is separated to FS+ and
FS−, and the interface between FS+ and FS− is split into L1 �red
dashed curve� and L2 �blue curve�, which intersect at two pairs of
points A1, B1 and A2, B2.
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f ij�k� = �iaj�k� − � jai�k� = − f ij�− k� . �C3�

We denote the upper half of the Fermi surface with kz�0 as
FS+ and the lower half as FS−. Thus

C1s =
1

2�



FS
d
ij f ij�k� =

1

2�



FS+

d
ij f ij�k�

+
1

2�



FS−

d
ij f ij�k� .

Since the two form d
ij denoting the normal direction of the
Fermi surface is also odd in k, the contributions of FS+ and
FS− to the Chern number are equal so that

C1s =
1

�



FS+

d
ij f ij�k� . �C4�

Since FS+ is a manifold with boundary, the Chern form is
equivalent to a boundary integral,

C1s =
1

�
�

�FS+

dliai�k� �C5�

in which �FS+ is the boundary of FS+, i.e., the kz=0 section
of the Fermi surface and dli is the tangent vector to �FS+.
However, it should be noted that Eq. �C5� holds only if ai�k�
is continuous in the whole FS+. In a generic gauge transfor-
mation ai�k�→ai�k�+�i�k on the boundary �FS+, the right-
hand side of Eq. �C5� can change by an even number,

1

�
�

�FS+

dliai�k� →
1

�
�

�FS+

dliai�k� +
1

�
�

�FS+

dli�i�k

=
1

�
�

�FS+

dliai�k� + 2n, n � N . �C6�

Thus we have

C1s =
1

�
�

�FS+

dliai�k� mod 2 �C7�

in a generic gauge choice.
Since the section kz=0 of the Fermi surface is also sym-

metric under time reversal, we can split it to two parts L1 and
L2, which are the time reverse of each other, as shown in Fig.
4�a�. Noticing that the tangential vector dli is opposite for k
and −k, and by making use of Eq. �C2� we have

�
L1

dliai�k� = − �
L2

dliai�k� − �
L2

dli�i�k

⇒C1s =
1

�
�

�FS+

dliai�k�

=
1

�
��

L1

+ �
L2

	dliai�k�

= −
1

�
�

L2

dli�i�k. �C8�

One can always split the boundary so that there are only two
points A and B on the interface between L1 and L2. Due to
time-reversal symmetry, the two points must be the time-
reversed partners of each other and the formula above be-
comes

C1s = −
1

�
��A − �B�mod 2 �C9�

Denote the momentum of A and B as kA and kB=−kA, ac-
cording to the definition Eq. �C1� we have

T��s,kA�� = ei�A�s,kB� ,

T��s,kB�� = ei�B�s,kA�

⇒T�T��s,kA��� = T�ei�A�s,kB�� = e−i�Aei�B�s,kA� .

�C10�

On the other hand, we have T2=−1 for each state so that

ei��A−�B� = − 1 ⇒ C1s = 1 mod 2 �C11�

Thus we have proved that �−1�C1s = �−1�ms =−1 for ms=1.
For the Fermi surfaces enclosing more TRI points, as

shown in Fig. 4�b�, the proof is similar. Due to the time-
reversal symmetry, we can always reduce the Chern number
to an integral over the upper half of the Fermi surface FS+ as
in Eqs. �C4� and �C5�. Generically, FS+ has two boundaries
at kz=0 and kz=� so that

C1s =
1

�



FS+

d
ij f ij�k� =
1

�
��

��FS+

− �
�0FS+

	dliai�k� ,

�C12�

where �0,�FS+ stands for the boundary of FS+ at kz=0 and
kz=�, respectively. In the same way as above, the boundary
at kz=0 can each be separated into two parts L1 and L2, with
several pairs of interface points Ai ,Bi , i=1,2 , . . . , p0. By the
same derivation as above one can prove �Ai

−�Bi
=� mod 2� and

1

�
�

�0FS+

dliai�k� = −
1

�
�
i=1

p

��Ai
− �Bi

� = p0 mod 2.

�C13�

The same argument works for the kz=� boundary. Denoting
the number of interface points at the kz=� boundary by p�,
we have

C1s = p� − p0 mod 2. �C14�

If the boundary �0,�FS+ encloses m0,� number of TRI points,
respectively, we have p0=m0 mod 2, p�=m� mod 2. Thus

�− 1�C1s = �− 1�p�−p0 = �− 1�m�+m0 = �− 1�ms �C15�

with ms=m�+m0 the total number of TRI points enclosed by
the Fermi surface. Thus we have proved the property 1.

2. Proof of property 2

To prove property 2, we take a simple s-wave pairing
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�k = �0T �C16�

with �0 a real number. For such a pairing the matrix Ak
=hk+ iT�k

† =hk+ i�0I so that the pairing on all the Fermi sur-
faces has the same sign,

	s = �s,k�T�k
†�s,k� = �0, ∀ s . �C17�

Consequently, the topological invariant in the weak pairing
limit is given by

NW��0� =
1

2�
s

sgn�	s�C1s =
sgn��0�

2 �
s

C1s. �C18�

On the other hand, the BdG Hamiltonian �Eq. �A13�� for this
simple pairing can be diagonalized easily to obtain the eigen-
values

Enk
� = � ��nk

2 + �0
2. �C19�

Thus for finite �0, the spectrum of the BdG Hamiltonian is
always gapped so that the winding number NW��0� remains
invariant for all �0�0. Thus we can compute NW in the limit
�0→+�. The unitary matrix Qk is given by

Qk = �
n

�n,k�
�nk + i�0

��nk
2 + �0

2
�n,k� ,

⇒ lim
�0→+�

Qk = i�
n

�n,k��n,k� = iI . �C20�

Obviously, the winding number NW��0→+��=0 so that
NW��0�=0 for any �0. According to Eq. �C18� we have
proven property 2,

�
s

C1s = 0. �C21�

APPENDIX D: PROPERTIES OF THE 1D Z2

TOPOLOGICAL INVARIANT [Eq. (11)]

In this section, we will study some basic properties of the
Z2 topological invariant defined in Eq. �11� of the main text
and show how it is reduced to the Fermi-surface formula �10�
in the weak pairing limit. We start from Eq. �10� of the main
text,

N1d =
Pf�T†Qk=��
Pf�T†Qk=0�

exp�−
1

2



0

�

dk Tr�Qk
†�kQk�	 . �D1�

First of all, T†Qk is antisymmetric since

T†hkT = h−k
T ,

T†�T�k
†�T = �k

†T = − �−k
†TT = �T�−k

† �T ⇒ T†QkT

= Q−k
T ⇒ T†Qk = Q−k

T T† = − �T†Q−k�T. �D2�

Thus the Pfaffian is well defined at k=0 and k=�.
Since Qk�U�N�, we have det Qk=ei�k which is a U�1�

phase. Since Tr�Qk
†�kQk�=Tr�log Qk�=log det Qk= i�k, we

have �0
�dk Tr�Qk

†�kQk�= i�����−��0��mod 2� so that

exp�− 

0

�

dk Tr�Qk
†�kQk�� = e−i�����−��0�� =

det�T†Qk=0�
det�T†Qk=��

.

�D3�

Thus

N1d
2 =

det�T†Qk=��
det�T†Qk=0�

exp�− 

0

�

dk Tr�Qk
†�kQk�	 � 1

�D4�

so that N1d always takes the value of �1.
Now we show that N1d is a topological invariant. For an

infinitesimal deformation Qk�Qk�=Qk+	Qk, the phase fac-
tor exp�− 1

2�0
�dk Tr�Qk

†�kQk�� only depends on the deforma-
tion of Qk at k=0 and �,

exp�−
1

2



0

�

dk Tr�Qk�
†�kQk���

= exp�−
1

2



0

�

dk Tr�Qk
†�kQk��e−i/2�	����−	��0��.

�D5�

On the other hand, the change in Pfaffian is given by

Pf�T†Qk=0,�� � = ei/2	�k=0,� Pf�T†Qk=0,�� � . �D6�

Consequently, we see that 	N1d=0 in any smooth deforma-
tion of the unitary matrix Qk as long as time-reversal sym-
metry is preserved.

In the weak pairing limit, the general formula �D1� can be
reduced to the Fermi-surface formula given by Eq. �10� of
the main text. In the weak pairing limit, assume there are M
Fermi points ks , s=1,2 , . . . ,M between 0 and �. As dis-
cussed in the main text, we require that the Fermi level does
not cross any band at k=0 or �. As discussed in Fig. 1 of the
main text, each Fermi point leads to a domain wall of 
sk for
the corresponding band s crossing the Fermi level. According
to Eq. �B3� in the weak pairing limit we have

det Qk = exp�i�
n


nk	 . �D7�

Across each Fermi point kFs, the phase 
sk will jump by
−� sgn�vFs	sks

� and the 
nk for other bands remain invariant.
It should be noted that the sign of vF enters the expression
since the winding of 
sk is given by −� sgn�	sks

� along the
direction of the Fermi velocity vFs. Consequently, the phase
log det Qk= i�n
nk is changed by −i� sgn�vFs	sks

� across the
sth Fermi point and the net change in log det Qk from 0 to �
is given by
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0

�

dk�k log det Qk = − i��
s=1

M

sgn�vF	sks
�

⇒exp�−
1

2



0

�

dk Tr�Qk
†�kQk��

= �
s

e−i�/2sgn�vFs	sks
�

� �
s

�− i sgn�vFs	sks
��

= �
s

�sgn�	sks
���

s

�− i sgn�vFs�� . �D8�

When there are m Fermi points with positive vFs and n Fermi
points with negative vFs, n−m gives the number of bands
which are above the Fermi level at k=0 but below the Fermi
level at k=�. If we denote N2�0� and N2��� as the number of
bands occupied at k=0 and k=�, respectively, then n−m
=N2���−N2�0�. Since all bands are paired in Kramers pairs
at k=0, �, N2�0�, and N2��� must be even. Thus we have

�
s

�− i sgn�vFs�� = �− i�min = ei/2��n−m� = �− 1�N2���−N2�0�/2.

�D9�

Now we study the Pfaffian Pf�T†Qk=0,��. Since we have as-
sumed the Fermi level does not cross the bands at k=0, �,
in the weak pairing limit we have �k=0,�=0. If the normal-
state Hamiltonian hk is diagonalized to

hk = Uk
†��1�k�

. . .

�N�k�
�Uk. �D10�

Qk can be obtained by

Qk = Uk
†�IN1�N1

− IN2�N2

	Uk �D11�

in which N1 and N2 are the number of unoccupied and occu-
pied bands, respectively. The Pfaffian Pf�T†Qk� can be ob-
tained as

Pf�T†Qk� = Pf�T†Uk
†�IN1�N1

− IN2�N2

	Uk�
= Pf�Uk

†TT†Uk
†�IN1�N1

− IN2�N2

	� · det Uk.

�D12�

By making use of the time-reversal-invariance condition
T†QkT=Q−k

T , one can prove that

�Uk
†TT†Uk

†�IN1�N1

− IN2�N2

	� = 0 �D13�

for k=0, � so that the matrix Uk
†TT†Uk

† is block diagonal.
Consequently, we have

Pf�Uk
†TT†Uk

†�IN1�N1

− IN2�N2

	�
= �− 1�N2/2Pf�Uk

†TT†Uk
†� = �− 1�N2/2Pf�T†� · det Uk

†.

�D14�

Thus

Pf�T†Qk� = �− 1�N2/2Pf�T†� �D15�

for k=0, �. It should be noted that the number of occupied
bands N2 is always even for k=0, � due to Kramers degen-
eracy.

Combining Eqs. �D8�, �D9�, and �D15� we obtain

N1d = �
s

�sgn�	sks
�� . �D16�

Thus we have proved that the general Z2 invariant �Eq. �11��
in the main text is equivalent to Eq. �10� in the main text in
the weak pairing limit.
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